Encog: library of interchangeable machine learning models for Java and C#
نویسنده
چکیده
This paper introduces the Encog library for Java and C#, a scalable, adaptable, multiplatform machine learning framework that was first released in 2008. Encog allows a variety of machine learning models to be applied to data sets using regression, classification, and clustering. Various supported machine learning models can be used interchangeably with minimal recoding. Encog uses efficient multithreaded code to reduce training time by exploiting modern multicore processors. The current version of Encog can be downloaded from http://www.encog.org.
منابع مشابه
Two Different Points of View through Artificial Intelligence and Vector Autoregressive Models for Ex Post and Ex Ante Forecasting
The ANN method has been applied by means of multilayered feedforward neural networks (MLFNs) by using different macroeconomic variables such as the exchange rate of USD/TRY, gold prices, and the Borsa Istanbul (BIST) 100 index based on monthly data over the period of January 2000 and September 2014 for Turkey. Vector autoregressive (VAR) method has also been applied with the same variables for ...
متن کاملNieme - Large-Scale Energy-Based Models Nieme: Large-Scale Energy-Based Models
In this paper we introduce Nieme, a machine learning library for large-scale classification, regression and ranking. Nieme relies on the framework of energy-based models (LeCun et al., 2006) which unifies several learning algorithms ranging from simple perceptrons to recent models such as the pegasos support vector machine or l1-regularized maximum entropy models. This framework also unifies ba...
متن کاملIllinoisSL: A JAVA Library for Structured Prediction
IllinoisSL is a Java library for learning structured prediction models. It supports structured Support Vector Machines and structured Perceptron. The library consists of a core learning module and several applications, which can be executed from command-lines. Documentation is provided to guide users. In Comparison to other structured learning libraries, IllinoisSL is efficient, general, and ea...
متن کاملNieme: Large-Scale Energy-Based Models
In this paper we introduce NIEME,1 a machine learning library for large-scale classification, regression and ranking. NIEME relies on the framework of energy-based models (LeCun et al., 2006) which unifies several learning algorithms ranging from simple perceptrons to recent models such as the pegasos support vector machine or l1-regularized maximum entropy models. This framework also unifies b...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Machine Learning Research
دوره 16 شماره
صفحات -
تاریخ انتشار 2015